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Equations (1) are integrated in a periodic quadratic box
of length 2f using adaptive mesh refinement with rectangu-The formation of current sheets in ideal incompressible magneto-

hydrodynamic flows in two dimensions is studied numerically using lar grids self-adjusting to the flow. In each rectangular grid,
the technique of adaptive mesh refinement. The growth of current a projection method is used where the time-stepping is
density is in agreement with simple scaling assumptions. As ex- performed in a second-order upwind manner [8–10]. For
pected, adaptive mesh refinement shows to be very efficient for

the projection step, we need the vorticities g6 5 (= 3studying singular structures compared to nonadaptive treat-
z6) ? ez and potentials c6 which are related by Dc6 5 g6.ments. Q 1997 Academic Press

The outline of the paper is as follows. In the next section,
the adaptive mesh refinement algorithm is introduced.

1. INTRODUCTION Then, we discuss the numerical results and compare the
growth of current density with the prediction of Sulem et

The formation of singularities in hydro- and magnetohy- al. [11]. Finally, we conclude that adaptive mesh refinement
drodynamic flows is still a controversial issue in the mathe- is an ideal tool for studying singular structures and should
matics and physics community. Since mathematically only be pursued further to study three-dimensional problems
very little is known [1], one has to rely on numerical simula- as the finite time blow up in the incompressible Euler
tions. Even in very elaborate numerical experiments (see equations.
Bell and Marcus [2], Kerr [3]) nonadaptive treatment is
limited very soon by the computer memory available, re- 2. ADAPTIVE MESH REFINEMENT
sulting in a resolution of less than 512 grid points in each
spatial direction. Since the singular structures like tubes 2.1. General Strategy
and sheets are not space filling, adaptive mesh codes seem

The main idea of adaptive mesh refinement is simple.to be the right choice for studying these problems, as has
One starts with a grid of given resolution and integratesbeen done by Pumir and Siggia [4, 5]. Unfortunately, the
the partial differential equation as usual. As soon as somemethods used in [4, 5] could only refine the region around
criterion is fulfilled, this initial grid is refined. This is donea singular point which lead in [4] to a substantial loss of
by marking all critical grid points where the discretizationenergy. Of course, it is desired to refine all regions where
error exceeds a prescribed value. Then new grids with finerthe numerical resolution is insufficient. Modern adaptive
resolution and timestep are generated which cover all thesemesh refinement algorithms, as introduced by Berger and
critical points. These grids belonging to the next level areColella [6] and Bell et al. [7], do not possess the above
then filled with interpolated data from the first level. Then,limitations and are good candidates for studying singularity
one integrates both levels until the resolution again be-formation even in incompressible systems.
comes insufficient. Now the critical points are collectedIn this paper, we investigate the formation of singular
over all grids of the actual level being refined. Filling thecurrent sheets described by the ideal incompressible mag-
new grids with data is achieved by first taking data fromnetohydrodynamic equations (MHD equations) in two di-
the previous level and, if existing, data from former gridsmensions for the time evolution of the velocity field u and
of the same resolution. This process is repeated recursively.magnetic field B. Using Elsässer variables z6 5 u 6 B, the
In addition, to communicate the boundary conditions, eachMHD equations take the symmetric form
grid needs information about its parent grids and its neigh-
bors. As one can see already, adpative mesh refinementtz6 1 z7 ? =z6 1 =p 5 0, div z6 5 0. (1)
requires the management of lists of levels, critical points,
grids, parent grids, and neighbors. Therefore, we pro-1 E-mail: grauer@thphy.uni-duesseldorf.de.
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grammed the handling of those structures in C11, whereas timestep Dtlevel11 and the spatial discretization lengths are
divided by a refinement factor r. Therefore, the procedurethe numerically expensive integrations are done in Fortran.

In order to encourage the reader to use adaptive mesh singlestep has to be called r-times on this new level in
order to reach the time t0 1 Dtlevel . Having completed thisrefinement we describe the above outline in more detail

in the next paragraphs. recursive integration loop, this level and all finer levels are
advanced to time t0 1 Dtlevel . Now the finer level data areTo deal with all the different lists we defined templated

list classes and iterations which can be used for all classes used in procedure update to improve the values of the
actual level. The procedure integrate is finished by check-representing levels, grids, critical points, parents, and

neighbors. ing if a certain criterion is fulfilled, that decides whether
a refinement step is performed.The integrator used for all grids is based on a projection

method combined with second-order upwinding. This
2.2. Regriddingscheme motivated by Bell et al. [8] was previously applied

to incompressible magnetohydrodynamic flows in two di- The criterion for refinement is adapted to the problem of
mensions [10]. It is clear, that the equations under consider- current sheet formation. The global maximum of vorticity
ation can be easily exchanged by other ones using explicit and current density is calculated and compared to the values
algorithms since the structures needed for adaptive mesh when the last refinement was done. Regridding is initiated,
refinement and the integrator are independent of each if the ratio of those maxima exceeds a prescribed value
other. which is equal to the refinement factor r due to the scaling

The timestep on a given level is advanced as illustrated symmetry of the MHD equations (1). The result of regrid-
by the following piece of pseudocode. ding is a new list of levels starting below the actual level.

This new list replaces the old one, which is then deleted.PROCEDURE integrate level.
For the problem of current sheet formation, it neverdo singlestep on level

happens that finer levels become obsolete. However, forbetter boundary on level
other problems where the criterion for refinement cannotsolve poisson equation on level
be physically motivated, generation and rebuilding of the
grid hierarchy is triggered after a certain number of time-if next level exists, then
steps on each level and based only on local errors. Thendefault boundary on next level
obsolete levels are discarded when resolution is sufficient.do r times

The logical structure of the regridding procedure isintegrate next level
shown in the subsequent pseudo-code.update of level

check criterion on level PROCEDURE regridding level.
for all grids on levelStarting at time t0 , the procedure singlestep performs

mark critical points and append them to a listone timestep Dtlevel on all grids of this level. In addition to
cover the critical points with rectangles (saw up)the data within the grid itself the integration scheme needs

boundary data which are by default obtained by interpola-
nesting rectangles into their parents andtion in space and time from previous level data. In the
assign parents and neighborssubsequent procedure better boundary, the boundary

data are, if possible, replaced by values from neighboring
fill the new rectangles with default datafine grids. After boundary data have been communicated

on each grid, in order to perform the projection step Pois-
calculate global maxima for comparisonson equations with fixed boundary are solved for the poten-
in the procedure checktials Dc6 5 g6. Now all data of the actual level are ad-

vanced to a time t0 1 Dtlevel and the recursion starts by
integrating the next level if existing. The first step in this if old level of same resolution existed before

regridding, thenrecursive process is achieved by supplying information
about the default boundary data from parent grids. This better data on new level from old level

solve poisson equation on new levelis done by storing the increments calculated from the actual
grids at time t0 and parent grids at time t0 1 Dtlevel . To if finer level existed before regridding, then

regridding of new levelachieve linear interpolation in time these increments are
added to the boundary data at the end of singlestep. else

assign global maxima from old levelStoring only the increments in a special C11 boundary
class avoids the memory overhead resulting from keeping else

solve poisson equation on new leveldata at present and previous times. On this next level, the
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The precedure regridding starts with a loop over all costs are assigned which are calculated as a sum of integra-
tion and memory costs (p the area), boundary communica-grids of level to collect the critical points. Therefore, we

calculate at each grid point the difference between the tion costs (p the perimeter) and fixed costs (measuring
the overhead for managing one additional grid). The twoconvection terms z7 ? =z6 evaluated using the spacing dx of

the actual grid and double the space 2 dx. If this difference rectangles having the minimal costs are returned. After-
wards a loop over these two rectangles is performed. Theyexceeds a prescribed threshold « we append this point and

a surrounding rectangle of given size to the list of critical are both given to the procedure cut to find the best cut
in the other direction. The costs of the two new rectanglespoints. In the procedure saw up these critical points are

covered with rectangles. The procedure nesting guaran- in comparison to the original one’s are used to decide
whether the second cut is accepted or not. This gives a listtees that they are properly nested into grids of the previous

level allowing for more than one parent grid. At the same of two, three, or four rectangles. Their costs are summed
up, and if they are less than the costs of the rectangle whichtime, parent and neighbor grids are assigned to each new

rectangle. Since these procedures are the most complex entered the procedure cut dim, they are returned to saw
up. Otherwise, an empty list is given back. In the latterones, they will be discussed in detail in the next subsections.

Now as each rectangle has information about its parents, case, if the efficiency measured by the ratio of critical points
and grid points in the rectangle is insufficient, we enforcethe new rectangles are filled with spatially interpolated

data in default data. To avoid discontinuities, interpola- a cut in the middle of the longer side of the rectangle. Now
the new rectangles are appended to a temporary list, whichtion is done on the fields containing the highest derivatives,

namely = 3 z6. In order to supply boundary conditions is, if not empty, passed to the recursive procedure saw up
again. This recursion is stopped when further cuts do notfor the solution of the Poisson equations, data for the

potentials c6 on the outermost boundary are assigned as allow a reduction of costs anymore. The above treatment
is summarized in the two following pieces of pseudo-code.well. Afterwards, global maxima needed in the procedure

check are calculated.
If the recursive regridding was first invoked on the deep- PROCEDURE saw up rectangles.

for all rectanglesest level, the procedure is finished by solving the Poisson
equations on the new level. Otherwise, data of the same calculate o and variance in x- and y-direction

if variance in x . variance in y, thenresolution already existed and are used in better data to
get more accurate values for the new grids. Data for the apply cut dim on rectangle in x-direction

elsepotentials are available after solving the Poisson equations.
If the old level of the same resolution was not the deepest apply cut dim on rectangle in y-direction

if no cut found and efficiency insufficient, thenlevel, the recursive regridding procedure is applied to the
new level. In order to avoid unnecessary rebuilding of the half rectangle in longer direction

append resulting rectangles to temporary listlevel hierarchy, global maxima used as reference in check
are assigned from the old level only in the other case. saw up of temporary list of rectangles

if temporary list is not empty, then
replace actual rectangle by temporary list

2.3. Grid Generation

The grid generation is performed in the procedure saw
up acting on a list of rectangles. On first entry, this list PROCEDURE cut dim of rectangle in direction dim

determine best cut in direction dimconsists of one rectangle which covers all critical points of
that level. Each rectangle is now processed in the following and return two rectangles
way. First, it is decided in which direction the first cut will
take place. Therefore, we calculate vectors in the x- and
y-directions which contain the number of critical points in loop over the two rectangles

cut in other directioneach column or row, respectively. According to Bell et al.
[7], we call them horizontal and vertical signatures o. The
first cut is done in the direction with larger fluctuations in
signature. This is achieved in the procedure cut dim, which if costs are smaller than those of actual

rectangle, thenfirst seeks for the best cut in this direction. In the procedure
cut zeroes of the signature and its turning points (zeroes replace actual rectangle by list
of Di 5 oi21 2 2 oi 1 oi11) are taken into account as possi-
ble cuts. If no such cuts are found, the midpoint is chosen.
A cut results in two lists of critical points. Each list is compare costs of new list (of 2–4 rectangles) with

those of original rectangle and return cheapestcovered by a rectangle of minimal size. To every rectangle
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needs slightly more computations, but has the advantage
to lead to a more optimized covering of the marked points
by rectangles. We decide whether the recursive cutting is
ended or not on the basis of the costs and not on the
fraction of marked points in the rectangle as they do. The
definition of costs as discussed above allows us to optimize
the grid generation with respect to specific demands, e.g.,
given by the numerical integration scheme, physical prob-
lem, and computer architecture.

2.4. Nesting

After generation of nonoverlapping rectangles in the
procedure saw up, it is not guaranteed that all rectangles
are properly nested in the rectangles of the parent level.
A typical example, where this is not the case, is shown in
Fig. 2.

To check, whether a rectangle is properly nested we
calculate the sum of areas of intersections with all rectan-
gles of the parent level. When this area equals the area of
the actual rectangle it is guaranteed that this rectangle is
properly nested. Otherwise, we proceed as follows. First,
we determine the longest common edge of the just calcu-
lated intersections. Compared to Berger and Colella’s [6]
realization of nesting our algorithm avoids coinciding cuts
of several levels and results in a small number of cuts only.
We seek for cuts perpendicular to the longest common

FIG. 1. The effect of Procedure saw up.

An example, where saw up produces three new rectan-
gles is shown in Fig. 1.

Let us briefly comment on the most important differ-
ences between our grid generation algorithm and the one
by Bell et al. [7]. First, we do not sort the marked points
into clusters before starting the grid generation itself. Clus-
tering is achieved by the procedure cut dim that evaluates
two cuts at a time, one in each dimension, instead of inde-
pendently performing one cut after another as they do.
We choose the cuts to be performed by evaluation of costs
and not according to a hierarchy in between the detected

FIG. 2. The result of the nesting procedure.positions for a cut as done by Bell et al. [7]. Our algorithm
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edge. Let us assume, as in Fig. 2, that this edge lies in the
y-direction. Then, we cut where the number of grid points
covered by the intersections in each row changes. This
list of rectangles is recursively tested for proper nesting.
Obviously, this procedure is well suited to assign parents
to each rectangle at the same time. After having obtained
a list of properly nested rectangles, they get information
about their neighbors.

2.5. Integral and Local Controls

In order to extract physical properties of the simulation,
it is necessary to calculate integral quantities like kinetic
and magnetic energy, as well as maxima of current density
and vorticity. The latter are easily obtained by looping over
all grids and all levels. Integral quantities are calculated in
the following way. First, on the coarsest level the energy
Elevel (swiss cheese energy) associated to the area not cov-
ered by grids of higher resolution is calculated. This is
repeated down to the lowest level. Finally, the energy is
obtained as a sum over all energies Elevel .

2.6. Parallelization

On shared memory machines our adaptive mesh re-
finement code can be parallelized in an effective and
straightforward way. The main time of the program is spent
in the procedure singlestep. Since the number of grids is
much higher than the number of processors, parallelization
is done by distributing the grids to the processors. That
means that as soon as a singlestep on a grid is finished,
the next grid is passed to the free processor. This results
in a very effective utilization of all processors. All this can
easily be done using standard Posix threads. The imple-
mentation on distributed memory machines using the
shared memory access model is in progress.

3. NUMERICAL RESULTS

In contrast to simulations of Frisch et al. [12] and Sulem
et al. [11], we choose as the initial condition a modified
Orszag–Tang vortex, given by

w0(x, y) 5 cos(x 1 1.4) 1 cos(y 1 2.0),

c0(x, y) 5 Ad[cos(2x 1 2.3) 1 cos(y 1 6.2)].

FIG. 3. Evolution of the current density at times 1.6, 2.2, and 2.7.
This initial condition, which was already used in turbulence
simulations [13, 10], possesses less symmetry and is there-
fore more generic for the formation of small-scale struc-
tures. Computations are done with periodic boundary con- in the contour plots of Fig. 3. In addition to the contour

levels, the rectangle hierarchy is plotted. The first plotditions on a square of length 2f. The initial spatial
resolution was given by 2562 grid points. shows the grid after the first refinement has taken place.

The contour plot at time t 5 2.2 contains already threeThe temporal evolution of the current density is shown
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FIG. 4. Current density at time 2.7.

levels. At the final time t 5 2.7 a total of five levels are
present. Figure 4 is a contour plot at the same time as the
last one of Fig. 3. To avoid hiding the sharpness of the
current sheets no rectangles are included. In the actual
simulation, the refinement factor was equal to r 5 2. On
a workstation with 128 Mbyte of main memory, four re-
finements could be realized corresponding to a resolution
of 40962 grid points with a nonadaptive scheme. The lim-
iting factor is the amount of main memory available,
whereas up to this resolution computational costs are
very moderate.

In the first picture the current sheets start to form; after-
wards they evolve into thinner and thinner sheets and
the maxima of current density and vorticity are increasing
continually. The current density is growing exponentially
in time. In Fig. 5 a semilogarithmic plot of the maximum
current density in the upper sheet is depicted. Included
is a fit to an exponential function given by jfit(t) 5 0.5
exp(2.115t). This functional behavior is in agreement with

FIG. 5. Amplification of current density.the results of Sulem et al. [11]. A detailed analysis of the
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FIG. 6. Energy conservation.

asymptotic scaling behavior and a comparison to the pre-
dictions in [11] will be presented elsewhere.

The second-order upwind scheme produces substantial
energy dissipation only if underresolved steep gradients
have formed. Therefore, the energy conservation is a mea-
sure whether the singular current sheets are sufficiently
resolved. In Fig. 6 we give a plot of energy as a function
of time. To be more precise, the total energy is conserved
to within less than 1%.

In order to further illustrate that the current sheets are
well resolved, in Fig. 7 we show one-dimensional cuts in

FIG. 7. Cuts of current density in x-direction through the maximumthe x-direction through the maximum of the current density
at time 2.72.in the upper half of the integration range. In the upper

plot the x-range equals the periodicity length. The lower
one with a reduced plot range shows that the grid points
of the finest levels resolve the current sheet very well. ber of grid points contained in each level’s grids, we display

In the previous section we mentioned that a refinement values for the level hierarchy at time t 5 2.7 in the following
would take place when the discretization error for the tables. In Table I the results are shown for a simulation
nonlinearity exceeds a prescribed value «. The choice of with a refinement factor r 5 2 and in Table II results are
the parameter « is crucial for the numerical accuracy. If « shown for another one with r 5 4.
is taken too large, certain regions may be underresolved From level to level the total number of grid points grows
which can lead to reconnection and violation of energy much less than by a factor of r2 necessary for a nonadaptive
conservation. Decreasing systematically the value of « has treatment. For r chosen equal to 2, one can see that even
the effect that reconnection phenomena are suppressed.
Below a certain threshold the numerical results proved to
be independent of «. However, it should be noted that TABLE I
small changes in « do only slightly alter the efficiency and

Statistics for Simulation with r 5 2memory consumption. The simulations shown in Fig. 3
were performed with « 5 0.025. Level Number of grids Grid points in level

Applying adaptive mesh refinement to the evolution of
0 1 70225singular structures like current sheets in magnetohydrody-
1 51 168033namics is motivated by the expected reduction of memory
2 100 341349needed to resolve them. This is well justified by the numeri-
3 178 734426

cal results. To give the reader an impression of how many 4 417 1557221
grids are generated on the different levels and of the num-
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TABLE II

Statistics for Simulation with r 5 4

Level Number of grids Grid points in level

0 1 70225
1 49 506073
2 195 2331952

for the very small value of « prescribed here it increases
no more than by a factor of about 2. This promises that
the compression rate will improve as more refinements
are performed.

In Table III for simulations with different refinement
factors comparison is made with regard to the total number FIG. 8. Comparison of adaptive and nonadaptive simulations.
of grid points on all levels. The number of grid points on
one data field with the same grid spacing as the finest level
in the adaptive code is called the nonadaptive size. In the
last row we give the ratio of the grid points, adaptively with fixed grids of resolutions 1282, 2562, 5122, and 10242.
and nonadaptively. For the investigated hierarchy of five It should be noted that integrating a grid of fixed size all
levels with a refinement factor r 5 2 this ratio is about data has to fit into the computer’s main memory, whereas
17%. When the finest levels are equally resolved, the com- for the adaptive simulations the size of the grid on which
pression for both refinement factors is practically indistin- timestepping is actually performed is relevant. Until the
guishable. For the comparison of adaptive versus nonadap- simulations become underresolved, a linear behavior is
tive treatment, the compression rate based on counting also observed in the nonadaptive simulations. Then the
grid points does not fully reflect the total improvement in upwind method introduces numerical viscosity leading to
main memory consumption. In upwind schemes several reconnection processes and substantial energy dissipation.
auxiliary fields have to be stored. In nonadaptive simula-
tions these full sized fields are present all the time, whereas

4. CONCLUSIONShere they are needed only temporarily during the execution
of a singlestep on a small grid.

The complexity of adaptive mesh refinement comparedLet us briefly discuss the portion of time spent in routines
to nonadaptive treatments should not be underestimated.related to adaptive mesh refinement. Using an analyzing
On the other hand, the growing progress of object orientedtool for performance analysis we could bound that portion
programming languages helps enormously to reduce theto be less than 8%, including checking, regridding, and all
difficulties in programming. To give some impression, theboundary and update communications.
programs needed for regridding, nesting, and the handlingWe want to finish this section with an impressive compar-
of data structures are only about 3000 lines of C11 code.ison of the results for the amplification of the current den-

As we have demonstrated, adaptive mesh refinement issity for several nonadaptive grid sizes and for the adaptive
a powerful tool to study the evolution of singular structurescode. Figure 8 is a parametric plot of the maximum current
as the formation of current sheets in ideal MHD. Otherdensity as a function of the fit jfit(t) 5 0.5 exp(2.115t) al-
problems of this type like in the axisymmetric [14] and theready depicted in Fig. 5. In addition to the results of the
full three-dimensional Euler equations are natural candi-adaptive mesh refinment code we include data obtained
dates for this method. Work in this direction is in progress.

Whether adaptive mesh refinment is also a useful con-
cept for simulating turbulent hydro- and magnetohydrody-TABLE III
namic flows will depend on how efficiently the small scale

Comparison of Different Refinement Factors structures can be covered by hierarchically nested grids.
r 5 2 r 5 4
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